New Paper by Notre Dame Researchers Describes Method for Cleaning Up Nuclear Waste

on March 20, 2012 5:12 PM EDT

New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Thomas.E.Albrecht-Schmitt (Photo: energy.nd.edu)

While the costs associated with storing nuclear waste and the possibility of it leaching into the environment remain legitimate concerns, they may no longer be obstacles on the road to cleaner energy.

A new paper by researchers at the University of Notre Dame, led by Thomas E. Albrecht-Schmitt, professor of civil engineering and geological sciences and concurrent professor of chemistry and biochemistry, showcases Notre Dame Thorium Borate-1 (NDTB-1) as a crystalline compound which can be tailored to safely absorb radioactive ions from nuclear waste streams. Once captured the radioactive ions can then be exchanged for higher charged species of a similar size, recycling the material for re-use.

Like Us on Facebook

If one considers that the radionuclide technetium (99Tc) is present in the nuclear waste at most storage sites around the world, the math becomes simple. There are more than 436 nuclear power plants operating in 30 countries; that is a lot of nuclear waste. In fact, approximately 305 metric tons of 99Tc was generated from nuclear reactors and weapons testing from 1943 through 2010. Its safe storage has been an issue for decades.

"The framework of the NDTB-1 is key," says Albrecht-Schmitt. "Each crystal contains a framework of channels and cages featuring billions of tiny pores, which allow for the interchange of anions with a variety of environmental contaminants, especially those used in the nuclear industry, such as chromate and pertechnetate."

Albrecht-Schmitt's team has concluded successful laboratory studies using the NDTB-1 crystals, during which they removed approximately 96 percent of 99Tc. Additional field tests conducted at the Savannah River National Laboratory in Aiken, S.C., and discussed in the paper have shown that the Notre Dame compound successfully removes 99Tc from nuclear waste and also exhibits positive exchange selectivity for greater efficiency.

The paper appears in the journal Advanced Functional Materials.

Source: University of Notre Dame

© 2012 iScience Times All rights reserved. Do not reproduce without permission.

Join the Conversation

Sponsored From Around the Web

    ZergNet
Follow iScience Times
us on facebook RSS
 
us on google
 
Most Popular
INSIDE iScience Times
Do Dolphins Get High? BBC Cameras Catch Dolphins Chewing On Pufferfish Toxins
Do Dolphins Get High? BBC Cameras Catch Dolphins Chewing On Pufferfish Toxins
How Many Ways Can You Tie A Tie?
How Many Ways Can You Tie A Tie?
Ribbon Of Charged Particles At Solar System's Edge Acts Like A Wind Sock For Interstellar Magnetism
Ribbon Of Charged Particles At Solar System's Edge Acts Like A Wind Sock For Interstellar Magnetism
How to Turn Your Tap Water Faucet  Into a Coffee Spout [VIDEO]
How to Turn Your Tap Water Faucet Into a Coffee Spout [VIDEO]
Coolest Science Photos Of 2013: From Blobfish To Two-Headed Shark, Comet ISON To Mars Selfie
Coolest Science Photos Of 2013: From Blobfish To Two-Headed Shark, Comet ISON To Mars Selfie
This Is A Scientifically-Proven Rock-Paper-Scissors Winning Strategy (But If Your Opponent Uses It Too, It's A Draw)
This Is A Scientifically-Proven Rock-Paper-Scissors Winning Strategy (But If Your Opponent Uses It Too, It's A Draw)